Spatial distribution and mechanical function of elastin in resistance arteries: a role in bearing longitudinal stress.

نویسندگان

  • Philip S Clifford
  • Srikanth R Ella
  • Aaron J Stupica
  • Zahra Nourian
  • Min Li
  • Luis A Martinez-Lemus
  • Kim A Dora
  • Yan Yang
  • Michael J Davis
  • Ulrich Pohl
  • Gerald A Meininger
  • Michael A Hill
چکیده

OBJECTIVE Despite the role that extracellular matrix (ECM) plays in vascular signaling, little is known of the complex structural arrangement between specific ECM proteins and vascular smooth muscle cells. Our objective was to examine the hypothesis that adventitial elastin fibers are dominant in vessels subject to longitudinal stretch. METHODS AND RESULTS Cremaster muscle arterioles were isolated, allowed to develop spontaneous tone, and compared with small cerebral arteries. 3D confocal microscopy was used to visualize ECM within the vessel wall. Pressurized arterioles were fixed and stained with Alexa 633 hydrazide (as a nonselective ECM marker), anti-elastin, or anti-type 1 collagen antibody and a fluorescent nuclear stain. Exposure of cremaster muscle arterioles to elastase for 5 minutes caused an irreversible lengthening of the vessel segment that was not observed in cerebral arteries. Longitudinal elastin fibers were demonstrated on cremaster muscle arterioles using 3D imaging but were confirmed to be absent in cerebral vessels. The fibers were also distinct from type I collagen fibers and were degraded by elastase treatment. CONCLUSIONS These results indicate the importance of elastin in bearing longitudinal stress in the arteriolar wall and that these fibers constrain vascular smooth muscle cells. Differences between skeletal muscle and cerebral small arteries may reflect differences in the local mechanical environment, such as exposure to longitudinal stretch.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell Biology/Signaling Spatial Distribution and Mechanical Function of Elastin in Resistance Arteries A Role in Bearing Longitudinal Stress

Received on: April 19, 2011; final version accepted on: September 20, 2011. From the Dalton Cardiovascular Research Center (P.S.C., S.R.E., A.J.S., Z.N., M.L., L.A.M.-L., Y.Y., M.J.D., G.A.M., M.A.H.) and Departments of Biological Engineering (S.R.E., A.J.S., M.J.D., G.A.M., M.A.H.) and Medical Pharmacology and Physiology (L.A.M.-L., M.J.D., G.A.M., M.A.H.), University of Missouri, Columbia, MO...

متن کامل

Effects of elastin haploinsufficiency on the mechanical behavior of mouse arteries.

Supravalvular aortic stenosis (SVAS) is associated with decreased elastin and altered arterial mechanics. Mice with a single deletion in the elastin gene (ELN(+/-)) are models for SVAS. Previous studies have shown that elastin haploinsufficiency in these mice causes hypertension, decreased arterial compliance, and changes in arterial wall structure. Despite these differences, ELN(+/-) mice have...

متن کامل

Role of elastin in spontaneously hypertensive rat small mesenteric artery remodelling.

Chronic hypertension is associated with resistance artery remodelling and mechanical alterations. However, the contribution of elastin has not been thoroughly studied. Our objective was to evaluate the role of elastin in vascular remodelling of mesenteric resistance arteries (MRA) from spontaneously hypertensive rats (SHR). MRA segments from Wistar Kyoto rats (WKY) and SHR were pressurised unde...

متن کامل

Study of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction

Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...

متن کامل

The Effect of Spatial Variability and Anisotropy of Soils on Bearing Capacity of Shallow Foundations

Naturally occurred soil deposits inherit heterogeneity and anisotropy in their strength properties. The main purpose of this paper is to model the soil stratum with anisotropy consideration and spatially varying undrained shear strength by using random field theory coupled with finite difference numerical analysis to evaluate their effect on the bearing capacity of the shallow foundations. In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 31 12  شماره 

صفحات  -

تاریخ انتشار 2011